ИССЛЕДОВАНИЕ ТЕПЛОЁМКОСТИ ЖИДКОСТИ

Лабораторная работа №1

План занятия:

- 1. Цель работы
- 2. Теплоёмкость (методический материал)
- 3. Описание лабораторной установки
- 4. Порядок проведения эксперимента
- 5. Методика расчёта средней теплоёмкости
- 6. Содержание отчёта
- 7. Контрольные вопросы

1. ЦЕЛЬ РАБОТЫ

Экспериментально измерить зависимость теплоемкости жидкости от температуры.

2. ТЕПЛОЁМКОСТЬ (МЕТОДИЧЕСКИЙ МАТЕРИАЛ)

Теплоемкостью тела называют отношение количества теплоты, поглощенной телом в определенном термодинамическом процессе, к изменению его температуры.

$$C_{x} = \frac{dQ}{dT},\tag{1}$$

где dQ - элементарное количество теплоты, подведённое к телу; dT элементарное изменение температуры тела, вызванное подведённым количеством теплоты; x - условное обозначение термодинамического процесса, для которого определяется теплоёмкость (например для изобарного процесса C_p , для изохорного C_y и т.д.).

Теплоемкость является экстенсивной характеристикой, т.е. ее величина зависит от количества вещества к которому подводится теплота. Очевидно, что для нагрева $10~\rm kr$ воды требуется в $5~\rm pa3$ больше теплоты, чем для нагрева $2~\rm kr$ воды при одинаковом изменении температуры. Поэтому на практике используют **удельные теплоемкости**, т.е. теплоемкости единицы количества вещества. Удельная теплоёмкость обозначается маленькой буквой c.

В зависимости от способа выражения количества вещества различают:

- удельную массовую теплоемкость (теплоемкость 1 кг вещества):

$$c_{x} = \frac{1}{m} \frac{dQ}{dT}, \left[\frac{\mathcal{J}\mathcal{H}}{\kappa \varepsilon \cdot \varepsilon pao} \right];$$

- удельную мольную теплоемкость (теплоемкость 1 моль вещества):

$$\left(c_{\mu}\right)_{x} = \frac{1}{M} \frac{dQ}{dT}, \left[\frac{\mathcal{J}\mathcal{H}}{MOЛЬ \cdot PPAO}\right];$$

- удельную объемную теплоемкость С (теплоемкость 1 m^3 вещества):

$$(c_v)_x = \frac{1}{V} \frac{dQ}{dT}, \left[\frac{\mathcal{L} \mathcal{H}}{M^3 \cdot \mathcal{L} pao} \right]$$

Так как 1 *моль* вещества имеет массу равную молекулярному весу - μ κz , то удельная массовая теплоемкость равна:

$$c_{x} = \frac{\left(c_{\mu}\right)_{x}}{\mu} \,. \tag{2}$$

Для расчёта по этой формуле молекулярный вес необходимо брать в $\kappa z / mоль$, например для воды $\mu = 0.018$ $\kappa z / mоль$.

Для идеального газа при нормальных условиях связь удельной объёмной теплоёмкости с удельной мольной теплоёмкостью газа может быть записана в следующем виде:

$$(c_{\nu})_{x} = (c_{\mu})_{x}/22,4.$$
 (3)

Значение коэффициента 22,4 M^3 можно получить из уравнения состояния идеального газа. Очевидно, что при $p_{ny} = 760$ мм.рт.ст и $t_{ny} = 0$ ^{0}C 1 1 моль газа занимает объем:

$$V_{yy} = M \frac{\Re T_{yy}}{p_{yy}} = \frac{8314,31 \cdot 273,15}{760 \cdot 133,322} = 22,4 \text{ M}^3.$$

Для жидкостей в настоящее время нет общепринятого уравнения состояния, а значит получить в общем виде связь мольной и объёмной теплоёмкости не представляется возможным.

Теплоемкость, определяемая по уравнению (1) при бесконечно малом изменении температуры, называется **истинной теплоемкостью при данной температуре**.

Для процесса (1-2) с конечным значением изменения температуры от t_1 до t_2 теплоемкость можно определить по формуле:

$$c_x|_{t_1}^{t_2} = \frac{q_{1-2}}{t_2 - t_1}. (4)$$

где q_{1-2} , [Дж/ κ г] удельное количество теплоты подведённое к телу для его нагрева от температуры t_1 до температуры t_2 . Теплоемкость, определяемая по уравнению (4), называется средней теплоемкостью в диапазоне температур от t_1 до t_2 .

Очевидно, что истинная теплоемкость:

$$c_{x} = \lim_{(t_{2}-t_{1})\to 0} \left(\frac{q_{1-2}}{t_{2}-t_{1}}\right). \tag{5}$$

При повышении температуры вещества увеличиваются колебательные движения атомов в молекулах, на это необходимо затрачивать все большее количество теплоты. Поэтому чем больше температура, тем больше требуется теплоты для нагрева вещества на один градус. В общем случае зависимость теплоты от температуры представляется уравнением:

$$c_x = c_{x0} + at + bt^2 + \dots, (6)$$

где: c_{x0} - удельная теплоёмкость вещества при t=0 ^{0}C , a,b - постоянные коэффициенты.

 $^{^{1}}$ Здесь и далее маленькой буквой t обозначается температура в шкале Цельсия. Следует помнить, что разность температур в шкале Цельсия соответствует разности температур в абсолютной шкале Кельвина.

Для технических расчетов можно пренебречь величиной коэффициентов при степенях температуры больше 1, т.е. использовать линейную зависимость:

$$c_x = c_{x0} + at \tag{7}$$

Численные значения коэффициентов в уравнениях (6) и (7) обычно находятся экспериментально. В справочной литературе, как правило, приводятся средние теплоемкости в диапазоне температур от 0 $\,^{0}C$ до текущей температуры t. Используя эти данные, можно рассчитать среднюю теплоемкость для любого диапазона температур:

$$c_{x}|_{t_{1}}^{t_{2}} = \frac{c_{x}|_{0}^{t_{2}} t_{2} - c_{x}|_{0}^{t_{1}} t_{1}}{t_{2} - t_{1}}$$
(8)

где: $c_x|_0^{t_2}$ - справочная средняя теплоемкость в диапазоне температур от 0^0C до t_2 , $c_x|_0^{t_1}$ - справочная средняя теплоемкость в диапазоне температур от 0^0C до t_1 .

В отличие от газов для жидкостей в настоящее время отсутствует удовлетворительная статистическая теория. Поэтому теоретические оценки теплоемкостей c_p и c_v жидкостей не могут быть сделаны, как, например, для газов и твердых тел. Теплоемкости жидкостей определяются экспериментально или рассчитываются по известным термодинамическим свойствам.

Известно, что теплоемкости жидкостей очень слабо зависят от давления. Теплоемкости c_p и c_v для жидкостей различаются незначительно и могут возрастать или убывать с повышением температуры. В таблице №1 приведены значения истинной удельной массовой изобарной теплоёмкости воды при различных давлениях и температурах 2 по данным работы Александрова А.А.

Таблина №1

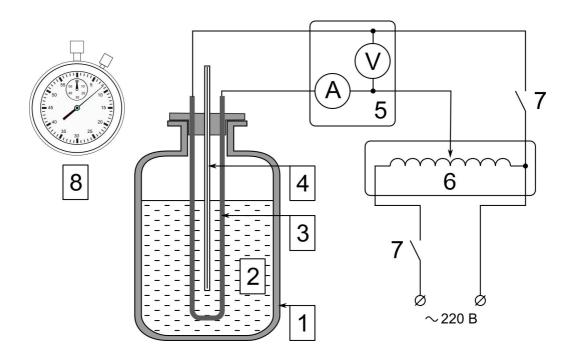
						таолица же		
	Истинная удельная массовая изобарная теплоемкость воды и водяного пара							
t , ${}^{0}C$	p ,[$M\Pi a$]							
	0,01	0,1	1,0	2,0	5,0	10,0		
0	4,220	4,219	4,215	4,210	4,196	4,172		
10	4,196	4,195	4,192	4,188	4,177	4,160		
20	4,185	4,185	4,182	4,179	4,170	4,155		
30	4,180	4,180	4,178	4,175	4,167	4,154		
40	4,179	4,179	4,176	4,174	4,167	4,155		
50	1,927	4,180	4,177	4,175	4,168	4,157		
60	1,912	4,183	4,181	4,179	4,172	4,161		
70	1,907	4,188	4,186	4,184	4,178	4,167		
80	1,905	4,196	4,194	4,191	4,185	4,174		
90	1,905	4,205	4,203	4,201	4,194	4,184		
100	1,906	2,074	4,215	4,212	4,206	4,194		

Понятие «теплоемкость» не совсем правильно отражает физическую сущность процессов теплообмена. Этот термин появился, когда в науке господствовала теория

 $^{^2}$ В таблице тёмной линией отделены данные по теплоёмкости воды и водяного пара при соответствующих температурах и давлениях. Серым полем выделены данные для давления близкого к атмосферному при нормальных условиях.

³ Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара: Справочник. Рек. Гос. службой стандартных справочных данных. ГСССД Р-776-98 - М.: Издательство МЭИ. 1999. - 168 с.

«теплорода», некоторой невесомой, неощущаемой среды, находящейся в веществе и способной перетекать из тела с более высокой температурой к телу с более низкой температурой. С современной точки зрения теплота - это форма переноса внутренней энергии. Обмен теплом между телами свидетельствует о передаче внутренней энергии от одного тела к другому в форме теплоты, т.е. в форме неупорядоченного хаотического движения частиц, составляющих тело.


Знание теплоемкости веществ позволяет значительно упростить технические тепловые расчеты. Тепловой (энергетический) баланс тела при изменении его температуры описывается уравнением:

$$Q = mc_x \left(t_2 - t_1 \right) \tag{9}$$

где Q, [Дж] - количество теплоты, получаемой (или отдаваемой) телом; m, [κz] - масса тела; c_x , [Дж/($\kappa z \cdot zpa \partial$)] - удельная массовая теплоемкость для соответствующего термодинамического процесса x; ($t_2 - t_1$), [$zpa \partial$] - изменение температуры тела.

3. ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ

Лабораторная установка состоит из сосуда Дьюара 1, заполненного исследуемой жидкостью 2, электронагревательного элемента 3, термометра (датчика температуры) 4, ваттметра 5, автотрансформатора 6, элементов коммутации 7 и секундомера 8. Схема установки приведена на рисунке.

Исследуемая жидкость заполняет сосуд Дьюара, закрывающийся крышкой из теплоизоляционного материала. Сосуд имеет двойную стенку, пространство внутри которой вакуумировано, что позволяет свести к минимуму потери тепла при нагреве жидкости. Нагрев жидкости осуществляется электронагревательным элементом, напряжение на котором регулируется автотрансформатором. Для измерения потребляемой электрической мощности применяется ваттметр⁴. Для измерения температуры жидкости термометр. Время работы установки измеряется секундомером.

-

⁴ Примечание.

4. ПОРЯДОК ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА

- 1. Отмерить количество жидкости по заданию преподавателя, залить в сосуд Дьюара, закрыть крышку⁵, Дождаться установления начального значения температуры.
- 2. Подключить установку к электрической сети. Все последующие действия выполнять с соблюдением правил электробезопасности.

Установка находится под напряжением опасным для жизни!

- 3. Проконтролировать установленные на ваттметры параметры тока и напряжения, включить питание автотрансформатора. Включить подачу напряжения на нагревательный элемент. По ваттметру установить заданную преподавателем электрическую мощность вращением ручки автотрансформатора.
- 4. Ожидать нагрева жидкости до температуры $20~^{\circ}C$. Запустить секундомер. Далее записывать значение времени работы установки (или интервал времени между снятием показаний термометра) при увеличении температуры жидкости на $10~^{\circ}C$.
- 5. В процессе нагрева жидкости контролировать четкость фиксации температур и поддерживать постоянную мощность. При достижении температуры 90 $\,^{0}C$ выключить питание автотрансформатора и подачу напряжения на нагревательный элемент.

6. Обесточить установку!

7. Снять крышку с сосуда Дьюара, слить жидкость в канализацию, подготовить рабочее место для выполнения измерений следующей группой студентов.

5. МЕТОДИКА РАСЧЁТА СРЕДНЕЙ ТЕПЛОЁМКОСТИ

Для расчета средней удельной теплоёмкости необходимо иметь экспериментальную зависимость температуры жидкости от времени работы нагревательного элемента, потребляемую нагревателем мощность и массу жидкости. Т.к. сосуд Дьюара не закрывается герметически, можно считать, что давление жидкости в процессе нагрева не изменяется. Таким образом в эксперименте происходит изобарный нагрев жидкости, а в результате эксперимента определяется изобарная теплоёмкость. Расчет средней удельной массовой изобарной теплоемкости в интервале температур выполняется по уравнению:

$$c_p\Big|_{t_1}^{t_2} = \frac{Q_{1-2}}{m(t_2 - t_1)},\tag{10}$$

где: Q_{1-2} , $[\mathcal{J}_{\mathcal{H}}]$ - количество теплоты, затраченное на нагрев жидкости от температуры t_1 до температуры t_2 , m, $[\kappa_{\mathcal{E}}]$ - масса жидкости.

Количество теплоты, затраченное на нагрев жидкости, определяется соотношением:

$$Q_{1-2} = W \cdot \Delta \tau \cdot \eta - Q_{nom}, \qquad (11)$$

где: W,[Bm] - мощность по ваттметру, η - коэффициент потерь энергии в электрической части установки (принять $\eta=0,95$), Q_{nom} - потери тепла через ограждающие конструкции (принять $Q_{nom}=0,05\cdot Q_{1-2}$)

При работе с ваттметром типа Д5085 необходимо переключателем установить ток 2,5 A из ряда (2,5 A, 5 A) и максимальное рабочее напряжение 150 B из ряда (75B, 150 B, 300 B, 450B, 600 B). Максимальное значение шкалы прибора 75. Т.о. при установленном напряжении 150 B показания прибора необходимо умножать на 2. Электрическая мощность вычисляется по формуле W = 100 показания прибора 2×2 .

5 Примечание

Для удобства расчётов плотность воды при нормальном давлении и комнатной температуре считать равной 1000 кг/куб. м. Т.о. объём воды в литрах соответствует её массе в килограммах.

Рассчитанные значения средней теплоёмкости $c_p\Big|_{t_1}^{t_2}$ привести к значениям истинной теплоёмкости следующим образом:

$$c_p(t) = c_p(\bar{t}) = c_p \Big|_{t_1}^{t_2}, \tag{12}$$

где: $\bar{t} = (t_1 + t_2)/2$, [0C] - среднее значение температуры жидкости в диапазоне от t_1 до t_2 .

Результаты расчетов целесообразно свести в таблицу.

Таблица №1

Масса жидкости:	КГ.	
Мощность нагревателя:		Вт.

	Результаты измерений средней удельной массовой изобарной теплоёмкости жидкости								
№ п./п.	t, °C	Δt , ${}^{0}C$				Q, Дж	$c_p \Big _{t_1}^{t_2},$ $\mathcal{A}\mathcal{B}\mathcal{B}$ $\mathcal{B}\mathcal{B}\mathcal{B}\mathcal{B}\mathcal{B}\mathcal{B}\mathcal{B}\mathcal{B}\mathcal{B}\mathcal{B}$	с _p , <u>Д</u> ж кг∙град	
1	20	-	-	0	-	-	-	-	
2	30	10	25						
3	40	10	35						
4	50	10	45						
5	60	10	55						
6	70	10	65						
7	80	10	75						
8	90	10	85						

Примечание: жирной рамкой выделены величины, которые необходимо измерить в ходе эксперимента.

Истинные значения теплоемкости по участкам представить в виде графика $c_p = f\left(t\right)$, на график нанести зависимость теплоёмкости приведённой в справочной литературе (см. Таблицу \mathbb{N}^2 1).

6. СОДЕРЖАНИЕ ОТЧЁТА

- 1. Титульный лист.
- 2. Цель работы.
- 3. Принципиальная схема экспериментального стенда.

- 4. Основные формулы, используемые при расчетах теплоемкости, с необходимыми пояснениями.
- 5. Протокол измерений с результатами расчётов.
- 6. График зависимости истинного значения удельной массовой изобарной теплоемкости от температуры в сравнении со справочными данными.
- 7. Выводы по работе.

7. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что называется теплоемкостью тела?
- 2. Что такое мольная, объемная и массовая теплоемкость? Связь между этими величинами.
- 3. Понятие средней и истинной теплоемкости единицы количества вещества. Написать соотношения для определения этих величин.
- 4. Как определить изменение температуры тела массой m и удельной массовой теплоемкостью c_n при известном количестве теплоты, полученном этим телом Q?
- 5. В какой степени теплоемкости c_p и c_y жидкостей зависят от давления?
- 6. Можно ли теоретически определить теплоемкость жидкостей?
- 7. Что такое удельная теплоемкость?